集成电路半导体光刻工艺及光刻机全解析 - 光刻旋转涂胶机 - 驰飞超声波

集成电路半导体光刻工艺及光刻机全解析

集成电路半导体光刻工艺及光刻机全解析 – 光刻旋转涂胶机 – 驰飞超声波

光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。

光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直 径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主 要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning )

光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。

光刻工艺过程

一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。

1、硅片清洗烘干

方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护)

目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。

2、涂底

方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。

目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。

3、旋转涂胶

方法:a、静态涂胶。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);

b、动态。低速旋转、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。

决定光刻胶涂胶厚度的关键参数:光刻胶的黏度,黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄;

影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时间点有关。

一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不同的光刻胶种类和分辨率):

I-line最厚,约0.7~3μm;KrF的厚度约0.4~0.9μm;ArF的厚度约0.2~0.5μm。

4、软烘

方法:真空热板,85~120℃,30~60秒;

目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶玷污设备;

边缘光刻胶的去除。光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离而影响其它部分的图形。所以需要去除。

方法:a、化学的方法。软烘后,用PGMEA或EGMEA去边溶剂,喷出少量在正反面边缘出,并小心控制不要到达光刻胶有效区域;b、光学方法。即硅片边缘曝光。在完成图形的曝光后,用激光曝光硅片边缘,然后在显影或特殊溶剂中溶解

5、对准并曝光

对准方法:a、预对准,通过硅片上的notch或者flat进行激光自动对准;b、通过对准标志,位于切割槽上。另外层间对准,即套刻精度,保证图形与硅片上已经存在的图形之间的对准。

曝光中最重要的两个参数是:曝光能量和焦距。如果能量和焦距调整不好,就不能得到要求的分辨率和大小的图形。表现为图形的关键尺寸超出要求的范围。

曝光方法:a、接触式曝光。掩膜板直接与光刻胶层接触。曝光出来的图形与掩膜板上的图形分辨率相当,设备简单。缺点:光刻胶污染掩膜板;掩膜板的磨损,寿命很低(只能使用5~25次);1970前使用,分辨率〉0.5μm。

b、接近式曝光。掩膜板与光刻胶层的略微分开,大约为10~50μm。可以避免与光刻胶直接接触而引起的掩膜板损伤。但是同时引入了衍射效应,降低了分辨率。1970后适用,但是其最大分辨率仅为2~4μm。

c、投影式曝光。在掩膜板与光刻胶之间使用透镜聚集光实现曝光。一般掩膜板的尺寸会以需要转移图形的4倍制作。优点:提高了分辨率;掩膜板的制作更加容易;掩膜板上的缺陷影响减小。

投影式曝光分类:扫描投影曝光。70年代末~80年代初,〉1μm工艺;掩膜板1:1,全尺寸;

步进重复投影曝光。80年代末~90年代,0.35μm(I line)~0.25μm(DUV)。掩膜板缩小比例(4:1),曝光区域22×22mm(一次曝光所能覆盖的区域)。增加了棱镜系统的制作难度。

扫描步进投影曝光。90年代末~至今,用于≤0.18μm工艺。采用6英寸的掩膜板按照4:1的比例曝光,曝光区域26×33mm。优点:增大了每次曝光的视场;提供硅片表面不平整的补偿;提高整个硅片的尺寸均匀性。但是,同时因为需要反向运动,增加了机 械系统的精度要求。

在曝光过程中,需要对不同的参数和可能缺陷进行跟踪和控制,会用到检测控制芯片/控片 。根据不同的检测控制对象,可以分为以下几种:a、颗粒控片:用于芯片上微小颗粒的监控,使用前其颗粒数应小于10颗;b、卡盘颗粒控片:测试光刻机上的卡盘平坦度的专用芯片,其平坦度要求非常高;c、焦距控片:作为光刻机监控焦距监控;d、关键尺寸控片:用于光刻区关键尺寸稳定性的监控;e、光刻胶厚度控片:光刻胶厚度测量;f、光刻缺陷控片:光刻胶缺陷监控。

举例:0.18μm的CMOS扫描步进光刻工艺。

光源:KrF氟化氪DUV光源(248nm) ;数值孔径NA:0.6~0.7;焦深DOF:0.7μm

分辨率Resolution:0.18~0.25μm

(一般采用了偏轴照明OAI_Off- Axis Illumination和相移掩膜板技术PSM_Phase Shift Mask增强);

套刻精度Overlay:65nm;产能Throughput:30~60wafers/hour(200mm);视场尺寸Field Size:25×32mm;

6、后烘

方法:热板,110~1300C,1分钟。

目的:a、减少驻波效应;b、激发化学增强光刻胶的PAG产生的酸与光刻胶上的保护基团发生反应并移除基团使之能溶解于显影液。

7、显影

方法:a、整盒硅片浸没式显影。缺点:显影液消耗很大;显影的均匀性差;

b、连续喷雾显影/自动旋转显影。一个或多个喷嘴喷洒显影液在硅片表面,同时硅片低速旋转(100~500rpm)。喷嘴喷雾模式和硅片旋转速度是实现硅片间溶 解率和均匀性的可重复性的关键调节参数。

c、水坑(旋覆浸没)式显影。喷覆足够(不能太多,最小化背面湿度)的显影液到硅片表面,并形成水坑形状(显影液的流动保持较低,以减少边缘显影速率的变 化)。硅片固定或慢慢旋转。一般采用多次旋覆显影液:第一次涂覆、保持10~30秒、去除;第二次涂覆、保持、去除。然后用去离子水冲洗(去除硅片两面的 所有化学品)并旋转甩干。优点:显影液用量少;硅片显影均匀;最小化了温度梯度。

显影液:a、正性光刻胶的显影液。正胶的显影液位碱性水溶液。KOH和NaOH因为会带来可 动离子污染,所以在IC制造中一般不用。最普通的正胶显影液是四甲基氢氧化铵(标准当量浓度为0.26,温度 15~250C)。在I线光刻胶曝光中会生成羧酸,TMAH显影液中的碱与酸中和使曝光的光刻胶溶解于显影液,而未曝光的光刻胶没有影响;在化学放大光刻胶中包含的酚醛树脂以PHS形式存在。CAR中的PAG产生的酸会去除PHS中的保护基团(t-BOC),从而使PHS快速溶解于TMAH显影液中。整个显影过程中,TMAH没有同PHS发生反应。

b、负性光刻胶的显影液。二甲苯。清洗液为乙酸丁脂或乙醇、三氯乙烯。

显影中的常见问题:a、显影不完全。表面还残留有光刻胶。显影液不足造成;b、显影不够。显影的侧壁不垂直,由显影时间不足造成;c、过度显影。靠近表面的光刻胶被显影液过度溶解,形成台阶。显影时间太长。

8、硬烘

方法:热板,100~1300C(略高于玻璃化温度Tg),1~2分钟。

目的:a、完全蒸发掉光刻胶里面的溶剂(以免在污染后续的离子注入环境,例如DNQ酚醛树脂 光刻胶中的氮会引起光刻胶局部爆裂);b、坚膜,以提高光刻胶在离子注入或刻蚀中保护下表面的能力;c、进一步增强光刻胶与硅片表面之间的黏附性;d、进 一步减少驻波效应。

常见问题:a、烘烤不足。减弱光刻胶的强度(抗刻蚀能力和离子注入中 的阻挡能力);降低针孔填充能力;降低与基底的黏附能力。b、烘烤过度。引起光刻胶的流动,使图形精度降低,分辨率变差。

另外还可以用深紫外线坚膜。使正性光刻胶树脂发生交联形成一层薄的表面硬壳,增加光刻胶的热稳定性。在后面的等离子刻蚀和离子注入(125~2000C)工艺中减少因光刻胶高温流动而引起分辨率的降低。

集成电路半导体光刻工艺及光刻机全解析 - 光刻旋转涂胶机 - 驰飞超声波

超声喷涂系统可以使用先进的喷涂技术来精确控制流速、镀膜速度和沉积量。低速喷涂成型将雾化喷涂定义为精确,可控的图案,在生产非常薄且均匀的涂层时避免过度喷涂。事实证明,使用超声波技术进行喷涂是在3D微结构上沉积光致抗蚀剂的可靠且有效的方法,从而减少了由于过多的金属暴露于蚀刻剂而导致的设备故障。

超声波喷涂系统已被证明适用于需要均匀、可重复的光致抗蚀剂或聚酰亚胺薄膜涂层的各种应用。杭州驰飞的喷涂系统可以控制从亚微米到100微米以上的厚度,并且可以涂覆任何形状或尺寸。它是其他涂层技术(例如旋涂和传统喷涂)的可行替代方案。

杭州驰飞的无阻塞超声涂层技术以其功能性和保护性材料的超薄微米涂层而闻名。喷嘴的超声振动有效地将颗粒分散在悬浮液中,并在薄膜层中产生非常均匀的颗粒分散,而导电颗粒没有从悬浮液中沉降出来。

在过去的十年中,对半导体进行了直接喷涂光刻胶涂层,并且对喷涂结果进行了深度研究,超声喷涂的光刻胶涂层显示出优于传统的旋涂。超声波喷涂是一种简单、经济和可重复的工艺,用于光刻晶圆加工中的喷涂光刻胶涂层。超声波喷涂系统可对流速、沉积速度和沉积量进行精细控制。低速喷雾成形,避免过喷,同时产生非常薄且均匀的涂层。

英文网站:CHEERSONIC ULTRASONIC COATING SOLUTION